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ABSTRACT

Medical image processing is considered as an important topic
in the domain of image processing. It is used to help the
doctors to improve and speed up the diagnosis process. In
particular, computed tomography scanners (CT-Scanner) are
used to create cross-sectional medical 3D images of bones.
In this paper, we propose a method for CT-Scanner identifica-
tion based on the sensor noise analysis. We built the reference
noise pattern for each CT-Scanner from its 3D image, then we
correlated the tested 3D images with each reference noise pat-
tern in order to identify the corresponding CT-Scanner. We
used a wavelet-based Wiener filter approach to extract the
noise. Experimental results were applied on eight 3D images
of 100 slices from different CT-Scanners, and we were able
to identify each CT-Scanner separately.

Index Terms— Digital forensics, medical image foren-
sics, authentication, device identification, noise pattern, sen-
sor noise, denoise filtering, wavelet transformation, Wiener
filter.

1. INTRODUCTION

Medical imaging has become nowadays an essential organ in
the world of medicine, which refers to the techniques that can
be used to have a look inside the body without need to be
opened up surgically. Medical image processing by the way,
has become also a common technique in the domain of image
processing.

Computed tomography [1] that is also called CT-Scanner
images, integrates a series of X-ray views that are taken from
so many different angles to create cross-sectional images of
the bones and soft tissues inside the body. The main objective
of CT-Scanner images is to provide much more information
than normal X-ray images. It is particularly used to provide
a quick diagnosis regarding the patient situation of internal
injuries. It can be used to visualize almost all the body parts
and it is widely used since it provides a lot of information
about the patient, the physical features and the potential dis-
ease. Information about the acquisition and device identifica-
tion, generally are stored in the DICOM files [2]. DICOM file
may be decomposed into two parts, meta data and raw image.

Meta data is easily readable, it contains all the information
about the acquired device and acquisition system, but in the
absence or unauthenticated metadata, we are in crucial matter,
where we are in need to identify the CT-Scanner from its raw
images. Image forensics is considered an important field of
research [3], that aims to validate the authenticity of images
by recovering information about their history, in the presence
of a non authenticated device or content modification.

In the term of digital image forensics, two basic problems
are addressed: forgeries tracing and identifies the imaging de-
vice. Regarding the trace of forgeries, a lot of work is found
in general digital photography [4], but in the scope of medi-
cal images and more specifically the CT-Scanners, very few
work existed. In [5], the authors present the first work of dig-
ital blind forensics within the medical imaging field. They
proposed a method to detect whether an image has been mod-
ified or not by general image processing operators. Even for
the device identification, nothing entirely dedicated to this
topic, even though there were some works about analyzing
the medical image characteristics according to the acquisition
parameters and device [6]. In [7], the authors proposed a
method for digital camera identification from sensor pattern
noise, they used a wavelet based denoise algorithm to sepa-
rate the noise component. Then, they generated a reference
noise pattern for the digital camera and finally, they used the
correlation to match the image to its corresponding camera.
The main defect in this method that is being built for the nor-
mal 2D digital images, but our basic concern is the slices of
3D medical CT-Scanner images.

In this paper, we propose a first analysis of this problem.
Using a denoising algorithm we built a reference noise pat-
tern for each device, then we identified the CT-Scanner based
on the correlation between the tested slices and the reference
noise pattern of each device.

The rest of this paper is organized as follows. In Section
2, we explained our proposed method for CT-Scanner identi-
fication with the denoise schema, CT-Scanner reference pat-
tern and the identification by correlation. In Section 3, we
previewed our experimental results in addition to some dis-
cussions and finally, we concluded our work with an expected
future work in Section 4.



Fig. 1. Overview of the method.

2. CT-SCANNER IDENTIFICATION METHOD

The proposed method is based on the method presented in
[7]. In the presence of many devices (CT-Scanners), we gen-
erated the reference pattern noise for each device as illustrated
in Fig. 1. In order to identify a slice as acquired by a specific
device, we applied a correlation between the noise component
of this image and the reference pattern noise of each device.
This image is classified as acquired by a specific device when
it has the highest correlation value with its reference pattern
noise as illustrated in Fig. 1. In this section we present the
denoising algorithm that used to isolate the noise component,
then the reference pattern noise generating and finally, how
the decision of device identification is made.

2.1. Denoising algorithm

We applied a filter using a wavelet transform in the frequency
domain and based on the proposed work in [8]. The remain-
ing noise achieved by this specific algorithm contains the least
amount of traces of the image content. Basically, this algo-
rithm is composed of two parts, the local variance estimation
of the wavelet components in the first part and denoising of
these components using Wiener filter [9] in the second one
as follows:

• Compute four levels of wavelet decomposition. In each
level, mark out the three high frequency sub-bands that
are horizontal, vertical and diagonal. For four levels
of wavelet decomposition with three sub-bands in each
level we have 12 sub-bands for each processed image.

• For each wavelet sub-band, based on the pixel neigh-
borhood with four levels from the first boundary neigh-
bors with square size of (3x3) to the fourth boundary
ones with square size of (9x9), we apply the local vari-
ance estimation:

σ̂2
W (i, j) = max

0,
1

W 2

∑
(i,j)∈W∗W

(
X2(i, j)− σ2

0

) ,

(1)

where W ∈ {3, 5, 7, 9} refers to the neighborhood
level, X is the wavelet sub-band and σ0 is an ini-
tial integer constant value that we tuned manually, σ0
∈ [1, 6].

Among the four previous values regarding the four lev-
els of neighborhood, we select the minimum value as
the estimated variance:
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• Denoise the wavelet sub-bands using Wiener filter, that
is used to filter out noise that has corrupted a signal:

Xden(i, j) = X(i, j)
σ̂2(i, j)

σ̂2(i, j) + σ2
0

, (3)

where X is the wavelet sub-band.

• Apply the inverse wavelet transformation on the de-
noised wavelet sub-bands to get the denoised compo-
nent F (s) of the original image s.

2.2. CT-Scanner reference pattern

We collected a group of images from each device, for each
group we applied a denoised function to extract the denoised
component, then we subtract it from the original version to
extract the noise component from each slice in this group as
illustrated in Fig. 2:

n(i) = s(i) − F (s(i)), (4)

where n is the noise component, s is the slice, F () is the
denoising function and i is the slice number.

Then, we averaged the noise slices in one slice (2D image)
that is the noise reference pattern or what is called the device
fingerprint, we continue the averaging in each group to extract
the device reference pattern:

RPN =
1

N

N∑
i=1

n(i), (5)

where RPN is the reference pattern noise, N is the number
of noise slices and n is the noise component.

Fig. 2. a) Example of an original slice from Siemens 1, b) its
denoised component, c) the noise component.

2.3. Decision by correlation

Since we have several devices and a group of images, we want
to identify from which device these images were acquired.

We extract the reference pattern noise for each device, extract
the noise components from the group of images. These im-
ages are identified as acquired from a specific device when
it has the highest correlation value with its reference pattern
noise:

corr(n(i), RPN) =
(n(i) − ¯n(i)).(RPN −RPN)

‖n(i) − ¯n(i)‖‖RPN −RPN‖
, (6)

3. EXPERIMENTAL RESULTS

To test our proposed method we applied the experiments on
eight 3D images from 3 different CT-Scanners. These images
are coded in 16 bits and acquired using the same parameters
(Beam energy is 120 KV, pitch value is around 1 and the slice
thickness is 3 mm), each 3D image is consisted of 100 slices
of 512x512 pixels. Three 3D images of phantom of calvary of
an adult from Siemens 1, three 3D images of head phantom as
Siemens 1 from Siemens 2 and two 3D images of skull from
General Electric as illustrated in Table, 1.

Table 1. Experimental images.
Siemens 1 Siemens 2 GE

Content phantom phantom skull
Nb of images 3 3 2
Nb of slices 300 300 200
Nb of slices of RPN 120 120 120
Nb of tested slices 180 180 80
Size (pixels) 512x512 512x512 512x512
Bits per pixel 16 16 16
Slice thickness 3mm 3mm 3mm
Pixel size 1mm 1mm 1mm

In CT-Scanner, 3D images are not isotropic, we decided
to work on slices, where pixels are isotropic. We decided to
work on 2D slices in order to have many identification feed-
backs. To create the reference pattern noise of each device,
regarding each CT-Scanner, we selected 120 slices randomly,
we got for each device a 3D image of 120 slices. Depend-
ing on the previous described method of RPN extraction, we
extracted a reference pattern noise for each device. Fig. 3
illustrates the three references according to each device, we
can notice the noise component in addition to some borders.
These borders are result of the averaging operator regarding
the 3D image content.

The rest of slices from each device are kept to test the CT-
Scanner identification. These slices are tested with the refer-
ence pattern noise of each device. 120 slices from the General
Electric, 180 slices from the Siemens 1 and 180 slices from
the Siemens 2. First, we extracted the noise component from
these slices according to the denoising schema, then subtract
the denoised component from the original image to get an im-
age of noise. For each noised image, we apply the correlation
between these slices and the reference pattern noise of each



device. To check the results, we repeated these experiments
five times and we got the same result each time.

Fig. 3. Example of the reference pattern noise from: a) the
General Electric, b) the first Siemens device, c) the second
Siemens device.

Fig. 4. Correlations between the tested slices of Siemens 1
and the reference noise pattern regarding each device.

Fig. 5. Correlations between the tested slices of Siemens 2
and the reference noise pattern regarding each device.

From the plots of Fig. 4, Fig. 5 and Fig. 6 we noticed
that the correlations between the tested slices and the refer-
ence noise pattern of the related device are classified as the
highest values. It is quiet clear that the correlation between
the tested image and the reference noise pattern of the device
that acquire this image is always the highest. Fig. 4 illus-
trates the correlation between the three reference noise pat-
terns (Siemens 1, Siemens 2 and General Electric) and the

Fig. 6. Correlations between the tested slices of General Elec-
tric and the reference noise pattern regarding each device.

180 slices from Siemens 1. The vertical axis refers to the
correlation value and the horizontal axis refers to the slice
number. Regarding the vertical axis, we can notice the cor-
relation between the reference from Siemens 1 and the tested
slices of Siemens 1, almost all of these correlation values are
more than 0.1, while all the other correlation values are less,
that refers to the relation between this device and the tested
image. So, we can consider the value 0.1 as a threshold that
classifies the images being acquired by the device of this ref-
erence, except some images regarding its content, as we will
see the identification percent in Table, 2. It is also the same
as in Fig. 5 and Fig. 6.

Table 2. Identification accuracy
Siemens 1 Siemens 2 GE

Siemens 1 95.5 % 3.0 % 5.0 %
Siemens 2 4.0 % 97.0 % 0
GE 0.5 % 0 95.0 %

Table, 2 shows up the classification rate, when we corre-
lated 180 slices from Siemens 1, 180 slices from Siemens 2
and 80 slices from General Electric with each device refer-
ence noise separately:

• 95.5 % of slices from Siemens 1 are classified correctly
as acquired from Siemens 1, but 4.5 % of slices weren’t
classified correctly.

• 97 % of slices from Siemens 2 were classified correctly
as acquired from Siemens 2, but 3 % of slices were not.

• 95 % of slices from General Electric were classified
correctly as acquired from General electric, but 5 % of
slices were not.

4. CONCLUSION AND FUTURE WORK

In this paper, we proposed an algorithm for medical image
forensics. For the coming studies, we will work with more



images and more devices, we are going to generalize our work
in 3D, to study the influence of image content, to study the
characteristics of the slices that give small correlation, to try
to identify sub-parts of the images in the case of merging dif-
ferent images, to study the possibility of classifying the im-
ages that are acquired by one device but in different acquisi-
tion parameters, to analyze the reconstruction process and to
study the influence of acquisition parameters. From the other
hand, we are going to study the influence of image compres-
sion on the CT-Scanner identification.
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